COMPARATIVE ANALYSIS OF PROPAGATION MODELS IN 5G CELLULAR COMMUNICATION IN THE NORTH JAKARTA REGION

Authors

  • Achmad zaidan zaki universitas budiluhur
  • Peby Wahyu Purnawan
  • Nifty Fath

Keywords:

5G celluler communication, propagation models, 28GHz, comparative analysis, frequencies, nort jakarta region

Abstract

 

In the realm of wireless communication, the choice of frequency and propagation model significantly influences signal propagation characteristics. This study delves into the comparative analysis of propagation models in 5G cellular communication, specifically focusing on the North Jakarta region. By employing the NYUSIM tool alongside 3GPP, Walfish-Ikegami, and ITU-R models, simulations were conducted at frequencies of 28 GHz and 3.5 GHz. The findings reveal a positive correlation between transmission distance and both Line-of-Sight (LOS) and Non-Line-of-Sight (NLOS) losses. As distance increases, LOS and NLOS values tend to elevate. At 28 GHz with the Omni antenna, LOS at 200 meters reaches 115.00 dB, while NLOS is 130.04 dB. However, using the Direc antenna at the same frequency and distance, LOS increases to 122.80 dB, and NLOS to 137.50 dB. Furthermore, frequency variation affects simulation outcomes, with 3.5 GHz displaying a broader range of Path Loss values (3.66 dB to 22.82 dB) compared to 28 GHz (4.40 dB to 23.53 dB). Consequently, the study underscores the critical role of frequency selection in determining signal loss levels and emphasizes the necessity of understanding frequency characteristics for efficient and reliable wireless communication network design.

 

References

[1] D. Aryanta, “Analisis Prediksi Path Loss Teknologi Seluler 5G Pada Sel Micro Urban Wilayah Kota Bandung,” vol. 9, no. 3, pp. 548–561, 2021, doi: 10.26760/elkomika.v5i3.548.
[2] T. A. Nugraha and A. Hikmaturokhman, “<title/>,” JURNAL INFOTEL, vol. 9, no. 1, p. 24, Feb. 2017, doi: 10.20895/infotel.v9i1.144.
[3] M. P. A. Simarmata, S. Soim, and M. Fadhli, “ANALISA LINK BUDGET DENGAN PERBANDINGAN PEMODELAN PROPAGASI PADA KOMUNIKASI SELULAR DAERAH URBAN,” Jurnal Elektro dan Telekomunikasi Terapan, vol. 5, no. 2, p. 712, Jul. 2019, doi: 10.25124/jett.v5i2.1989.
[4] H. Poddar, T. Yoshimura, M. Pagin, T. S. Rappaport, A. Ishii, and M. Zorzi, “Full-Stack End-To-End mmWave Simulations Using 3GPP and NYUSIM Channel Model in ns-3,” Feb. 2023, [Online]. Available: http://arxiv.org/abs/2302.12385
[5] G. Di and T. Karang, “Prediksi Point to Point Path Loss Frekuensi 28.”
[6] I. A. Pohan et al., “PEMODELAN KANAL 38 GHZ UNTUK KOMUNIKASI 5G MENGGUNAKAN NYUSIM.”
[7] K. NI’AMAH, S. NURJANAH, and A. R. DANISYA, “Model Kanal 5G Frekuensi 28 GHz dengan Pengaruh Suhu di Kota Yogyakarta,” ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika, vol. 8, no. 2, p. 276, May 2020, doi: 10.26760/elkomika.v8i2.276.
[8] A. Iyanda Sulyman, A. T. Nassar, M. K. Samimi, G. R. MacCartney Jr, T. S. Rappaport, and A. Alsanie, “MILLIMETER-WAVE COMMUNICATIONS FOR 5G Radio Propagation Path Loss Models for 5G Cellular Networks in the 28 GHz and 38 GHz Millimeter-Wave Bands,” 2014.
[9] H. Yuliana, F. M. Santoso, S. Basuki, and M. R. Hidayat, “Analisis Model Propagasi 3GPP TR38.900 Untuk Perencanaan Jaringan 5G New Radio (NR) Pada Frekuensi 2300 MHz di Area Urban,” Telekontran : Jurnal Ilmiah Telekomunikasi, Kendali dan Elektronika Terapan, vol. 10, no. 2, pp. 90–97, Oct. 2022, doi: 10.34010/telekontran.v10i2.8233.
[10] F. S. Mukti, “Comparative study of four indoor empirical propagation models for campus wireless network,” Jurnal Teknologi dan Sistem Komputer, vol. 7, no. 4, pp. 154–160, Oct. 2019, doi: 10.14710/jtsiskom.7.4.2019.154-160.
[11] S. Susanto, N. A. Siswandari, and O. Puspitorini, “INFORMASI TRAFIK FREKUENSI 700 MHz-3 GHz DI SURABAYA DENGAN MENGGUNAKAN PETA ELEKTRONIK.”
[12] S. Susanto, N. A. Siswandari, and O. Puspitorini, “INFORMASI TRAFIK FREKUENSI 700 MHz-3 GHz DI SURABAYA DENGAN MENGGUNAKAN PETA ELEKTRONIK.”

Published

2024-04-30